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Abstract: Predictive maintenance is vital for ensuring the longevity and optimal performance of
building systems, such as Heating, Ventilation, and Air Conditioning (HVAC) units. By utilizing
historical sensor data, machine learning techniques can forecast potential failures, enabling timely
maintenance interventions. This study evaluates and compares the performance of three prominent
machine learning Models-Logistic Regression (LR), Random Forest (RF), and Gradient Boosting (GB)
in predicting HVAC unit failures. A simulated dataset encompassing features like temperature,
humidity, pressure, usage hours, and maintenance logs was used for this comparison. Finally, Gradient
Boosting demonstrated the highest performance, with an accuracy of 87 %, precision of 0.86, recall of
0.88, Fl-score of 0.87, and ROC-AUC of 0.92. These results underscore the superior predictive
capabilities of Gradient Boosting and its potential in enhancing maintenance strategies for critical
building systems. The results suggest that Gradient Boosting is the most effective model for enhancing
predictive maintenance strategies in building systems, offering valuable insights for timely and
efficient maintenance interventions.
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1. INTRODUCTION

Building maintenance plays a vital role in infrastructure management, influencing public safety, operational
continuity, and cost-effectiveness. Poor maintenance practices can lead to early system failures, escalating expenses, and
structural degradation that endangers the safety and functionality of buildings. The lack of an effective building
maintenance management system, coupled with the absence of advanced predictive maintenance tools, presents
significant obstacles to the sustainable development of both current and future infrastructures.

Traditionally, building maintenance has been reactive, addressing issues only after failures occur. This reactive
approach is often the reason for unplanned downtime, elevated repair costs, and inefficient use of resources. In response
to the above mentioned challenges, there has been a global shift towards more proactive maintenance strategies.
Predictive maintenance, which aims to forecast potential failures by analyzing historical and real-time data, has become a
key component of modern building management systems. This shift enhances operational efficiency, extends equipment
lifespans, and reduces maintenance costs [1,2].

Machine learning (ML) has evolved as an unignorably powerful enabler of predictive maintenance. Unlike
conventional methods that rely on predetermined schedules or reactive measures, ML models can analyze large datasets
from building systems to identify patterns and predict when failures are likely to occur. This allows facility managers to
optimize maintenance activities, minimizing downtime and avoiding unnecessary repairs.

This research explores the adaptation of ML models to predict system failures in buildings using sensor data.
Specifically, we compare the evaluated outcomes of three widely-used algorithms—Logistic Regression, Random Forest,
and Gradient Boosting [3]. Each model presents distinct advantages in terms of accuracy, interpretability, and efficiency.
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The objective is to identify which model performs best in predicting failures, providing facility managers with
valuable insights for optimizing building maintenance strategies. Moreover, this study seeks to bridge the gap in building
management practices and promote sustainable infrastructure development [4, 5].

2. LITERATURE SURVEY

Numerous studies have explored predictive maintenance frameworks and their effectiveness across various
building systems. Almobarek et al. (2023) [6] developed a predictive maintenance framework for cool water systems in
commercial buildings, utilizing a decision tree model that achieved over 98% accuracy in fault prediction and reduced
maintenance costs by more than 20%. This illustrates the considerable potential of machine learning in enhancing system
reliability. Bouabdallaoui et al. (2021) [7] introduced a comprehensive five-step predictive maintenance framework that
includes data collection, processing, model development, fault notification, and model refinement. When applied to
HVAC systems in a sports facility using IoT devices and a building automation system, the framework demonstrated
promise in forecasting system failures. However, challenges related to data availability and feedback mechanisms
indicated areas that require further improvement.

Lu et al. (2007) [8] proposed a condition-based maintenance strategy that models system deterioration as a
stochastic dynamic process. By employing structural time series, state-space modeling, and Kalman filtering, they were
able to predict future system deterioration, allowing for decisions to be made based on failure probabilities and cost
analyses. This method provided a dynamic balance between preventive maintenance and economic factors. In a more
recent study, Arora et al. (2023) [9] adapted an existing predictive maintenance methodology for residential heating
systems, benefiting the reliability department at BOSCH Thermotechnology. Their research showcased the versatility of
predictive maintenance across various domains by optimizing its implementation for heating systems.

Omar et al. (2019) [10] designed a mathematical model for building maintenance based on global standards and
expert input. Using the Weighted Sum Model (WSM) and SPSS analysis, they identified critical maintenance items and
proposed their model for quick evaluation and decision-making. This framework provides architects and engineers with a
structured tool for predictive maintenance.

Sanzana et al. (2022) [18], investigates the application of machine learning (ML) techniques for predictive
maintenance specifically in cooler environments. The authors evaluate various ML algorithms, including supervised and
unsupervised methods, and discuss their effectiveness in analyzing sensor data and operational metrics to anticipate
equipment failures. By focusing on the unique challenges posed by cooler conditions, the study highlights the need for
tailored approaches in data collection and analysis. The authors support their findings with practical case studies that
demonstrate the benefits of implementing predictive maintenance strategies, such as improved equipment reliability and
reduced downtime, while also suggesting future research directions to enhance model accuracy through hybrid
approaches and integration of domain knowledge.

Recent advancements in machine learning have revolutionized predictive maintenance, especially in industrial
systems. Supervised learning algorithms like Support Vector Machines (SVM), Decision Trees, and Neural Networks
have proven effective in predictive tasks. Studies focusing on building systems, particularly HVAC units, have found
Random Forests and Gradient Boosting to be highly effective in fault detection. Ensemble learning techniques, which
combine multiple models, often outperform single-model approaches due to their ability to minimize variance and bias
(Kasiviswanathan et al. 2024) [12,13].

Despite the progress in the field, there is a lack of comparative analysis between simpler models such as
Logistic Regression and more complex ensemble methods like Random Forest and Gradient Boosting. This study fills
this gap by comparing the performance of these models in predictive maintenance for building systems.
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3. METHODS AND MATERIALS

The proposed research work, we applied three machine learning models to a dataset derived from sensor data of
HVAC units. The dataset included features such as temperature, humidity, pressure, usage hours, and maintenance logs.
The proposed framework for predictive maintenance of HVAC systems utilizes simulated historical sensor data,
incorporating features like temperature, humidity, pressure, and usage logs, with the target variable representing
maintenance needs.

Data pre-processing involves addressing missing values, normalizing continuous variables, and dividing the
dataset into training and testing sets. Attribute selection was performed to identify the most relevant predictors, thereby
enhancing model efficiency. We trained and evaluated three machine learning models and evaluated performance metrics
such as accuracy, precision, recall, F1-score, and ROC-AUC.

A comparative analysis of these models was carried out to identify the most effective approach for optimizing
predictive maintenance strategies. The workflow of the proposed methodology is illustrated in Figure 1.

Training and

Data Collection Performance
i ) s:el:::‘:l?n ) Testl;gL :‘I:;:Ihsosen ) Pe::al s;ce %) Comparison of the

Preprocessing (LR.RF & GB) Yy Chosen ML models

Figure 1: Work flow of the proposed framework.
3.1 DATA DESCRIPTION

The dataset used for this study was simulated to mimic real-world HVAC sensor data. Table 1 summarizes the
key features and target variable of the simulated HVAC sensor data.

Table 1: Key features and target variable of sensor data

Variables Description Range/Values
Temperature (°C) Temperature readings from the HVAC system 15-35°C
Humidity (%) Humidity levels in the environment 30% - 70%
Pressure (kPa) Pressure readings from the HVAC system 90 - 120 kPa
Usage Hours Number of hours the HVAC unit had been in operation Varies (Continuous)
Maintenance Logs Binary indicator of whether maintenance had been Oorl

performed (0: No, 1: Yes)
Target (Failure) Binary indicator of system failure Oorl
(0: No Failure, 1: Failure)
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3.2 SELECTION OF ML MODELS FOR COMPARATIVE ANALYSIS

In the comparative investigation of ML models for predictive maintenance, selecting the right models is
essential to harness their complementary strengths. We chose Logistic Regression, Random Forest, and Gradient
Boosting because of their unique characteristics and benefits:

3.2.1 Logistic Regression (LR)

LR is valued for its straightforward implementation and ease of interpretation. It provides binary classification
by modeling the relationship between features and the probability of an event (Cramer 2002) [11].

i) Simplicity and Interpretability: Its simplicity makes it a suitable baseline model, offering fast training and prediction
times. However, its major limitation is its inability to capture non-linear relationships, which can restrict its performance
in more complex scenarios typical in predictive maintenance. Despite this limitation, Logistic Regression's
interpretability makes it valuable in situations where understanding the relationship between individual features and
outcomes is important. For example, in predictive maintenance, the model can offer insights into the contribution of each
feature to the likelihood of equipment failure.

ii) Probabilistic Output: Logistic Regression generates probabilistic outputs, which provide more than just binary
classifications. This can be particularly useful for threshold-based decision-making in predictive maintenance, where a
probability score might be used to prioritize maintenance actions.

3.2.2 Random Forest

Random Forest is an ensemble learning technique that constructs multiple decision trees and combines their
results to improve both accuracy and stability. Each tree is trained on a randomly selected subset of the data, and the final
prediction is made through majority voting for classification tasks or averaging for regression tasks. This approach
reduces the risk of overfitting that individual trees often face, making the model more robust. Random Forest also ranks
features by their importance, providing insights into which variables contribute most to the prediction. Overall, it is
highly effective for complex datasets and large-scale predictive tasks. [14,15].

i) Robustness and Flexibility: Its robustness makes it well-suited for complex datasets with diverse feature types, as it
mitigates the risk of over fitting, which can be a concern with simpler models like Logistic Regression. In predictive
maintenance, where data may come from various sources like sensors, logs, or environmental factors, Random Forest can
handle the heterogeneity effectively. Additionally, Random Forest provides insights into feature importance, which can
help identify the most critical factors driving system failures, thus aiding maintenance prioritization.

ii) Non-linear Relationships: Unlike Logistic Regression, Random Forest is capable of capturing non-linear
relationships between features. This makes it particularly valuable for predictive maintenance tasks, where complex
interactions between equipment age, usage patterns, and environmental conditions might affect failure rates. Random
Forest’s ability to model such interactions enhances its predictive power in maintenance scenarios.

3.2.3 Gradient Boosting

Gradient Boosting is known for its superior predictive performance, achieved through the iterative correction of
errors from previous models. It works well with different loss functions and adapts effectively to complex patterns within
the data [16,17].

i) High Predictive Accuracy: For predictive maintenance, where subtle trends in sensor data or operational logs could
signal upcoming failures, Gradient Boosting's ability to refine its predictions iteratively makes it particularly useful.
However, Gradient Boosting comes with the trade-off of longer training times and potential over fitting if not carefully
tuned. Nonetheless, its accuracy makes it a powerful model for more intricate maintenance datasets.
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ii) Handling of Outliers: One of Gradient Boosting’s strengths is its reduced sensitivity to outliers, thanks to its iterative
learning process. In practical applications of predictive maintenance, sensor anomalies or unusual data points are
common, and Gradient Boosting's ability to handle these outliers without sacrificing performance enhances its robustness
in real-world settings.

3.3 TRAINING AND TESTING OF MACHINE LEARNING MODELS

The dataset was split into 70% for training and 30% for testing to provide an impartial assessment of the model's
performance. This train-test split strategy allowed for sufficient data to train the models while reserving a portion for
evaluating how well the models generalize to unseen data.

o Logistic Regression: The model was trained using a standard linear relationship between the input features and
the binary target variable. This approach allows the model to estimate probabilities and classify outcomes based
on the learned weights, making it a baseline model for comparison.

e Random Forest: Random Forest was trained using 100 decision trees, with each tree constructed using a
random subset of features. This method improves generalization by reducing the risk of overfitting and
increasing model robustness, particularly in handling non-linear relationships and diverse feature types.

o Gradient Boosting: The Gradient Boosting model was trained with a learning rate of 0.1 and 100 boosting
iterations. Through this iterative process, the model sequentially corrects errors from previous iterations,
enhancing its ability to capture complex patterns in the data and improving overall predictive performance.

Each model was assessed on the testing set to evaluate its accuracy, precision, recall, F1-Score, and ROC-AUC,
providing a complete understanding of their effectiveness in predictive maintenance tasks.

4. RESULTS AND DISCUSSION

The performance comparison of three ML classifiers reveals that Gradient Boosting consistently outperforms
the other models across all key metrics as presented in Table 2 and Figure 2.

Table 2: Comparison of performance metrics for the chosen ML models

Model Accuracy Precision Recall F1-Score ROC-AUC |
Logistic 0.82 0.80 0.85 0.82 0.88
Regression

Random 0.84 0.83 0.86 0.84 0.90

Forest

Gradient 0.87 0.86 0.88 0.87 0.92
Boosting

Gradient Boosting emerges as the best performer with an accuracy of 0.87, indicating it correctly predicts
outcomes 87% of the time, followed by Random Forest at 0.84 and Logistic Regression at 0.82. In terms of precision,
Gradient Boosting again leads with 0.86, showing that it minimizes false positives better than Random Forest 0.83 and
Logistic Regression 0.80. This suggests that Gradient Boosting and Random Forest are more suitable when avoiding
false positives is critical.

When it comes to recall, the ability the measures to identify true positives, Gradient Boosting scores highest at 0.88,
slightly ahead of Random Forest at 0.86 and Logistic Regression at 0.85. This means Gradient Boosting is more reliable
in scenarios where missing true positives, such as in fraud detection or medical diagnoses, is a greater concern.
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Figure 2: Performance comparison of ML models in Predictive Maintenance in Building Systems

The Fl-score, which balances precision and recall, follows a similar pattern. Gradient Boosting has the highest
score of 0.87, indicating the best trade-off between precision and recall, while Random Forest and Logistic Regression
have F1-scores of 0.84 and 0.82, respectively.

Lastly, the ROC-AUC values reinforce Gradient Boosting's superior performance, with the model achieving a
score of 0.92, the highest among the three. This means it has the best ability to distinguish between positive and negative
cases. Random Forest follows with a ROC-AUC of 0.90, while Logistic Regression scores 0.88. Overall, Gradient
Boosting is the top-performing model across all metrics, making it the best choice for tasks requiring both high
prediction accuracy and class separation. Random Forest is a strong alternative, while Logistic Regression, though
effective, falls behind in precision and overall classification quality. Overall, Gradient Boosting is recommended for
complex scenarios, while Random Forest and Logistic Regression are viable alternatives where interpretability and speed
are prioritized.

5. CONCLUSION

The analysis reveals that Gradient Boosting consistently outperforms Logistic Regression and Random Forest
across all key metrics. Its superior predictive accuracy, higher recall, and robustness in distinguishing between
maintenance and non-maintenance scenarios make it the most suitable model for predictive maintenance in building
systems. However, Random Forest also performs well, especially in feature-rich environments where interpretability (via
feature importance) is valued. Logistic Regression, while not as strong in handling complex relationships or non-
linearity’s, remains a reliable and interpretable baseline model, especially useful in cases where transparency is
paramount. In practical applications, Gradient Boosting should be the model of choice when accuracy and the ability to
handle complex data are priorities. However, for faster, more interpretable models, Random Forest or Logistic
Regression may still be viable options depending on the specific use case.
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